
An invitation to the project
Denotational Engineering

of Programming Languages

Andrzej Jacek Blikle

June 4th, 2021

"An invitation to the project DEPL” by Andrzej Blikle is licensed under a Creative Commons: Attribution —

NonCommercial — NoDerivatives.

Current working version of the book

"A Denotational Engineering of Programming Languages"

and current versions of transparences are available on

http://www.moznainaczej.com.pl/denotational-engineering/denotational-engineering-eng.

You can write to me on: andrzej.blikle@moznainaczej.com.pl

General rules of cooperation

June 4, 2021 2A.Blikle - An invitation to a project (24)

Do not hesitate to:

• ask questions,

• doubt,

• question solutions and suggest you own,

• become an active coauthor of the project.

June 4, 2021 3A.Blikle - An invitation to a project (24)

The philosophy

of the project

What shall we try to do?

June 4, 2021 4A.Blikle - An invitation to a project (24)

THE QUALITY OF A PROGRAM:

1. the compliance of program-specification with user’s

expectations

2. the compliance of a program with its specifications.

Currently for Python-like sequential programming
(no concurrency).

To suggest a way of improving the quality of programs.

Work on concurrency

is in progress

Why do we want to tackle the problem?

June 4, 2021 5A.Blikle - An invitation to a project (24)

An example of a disclamer The entire risk as to the quality and performance of the

program is with you. Should the program prove defective, you assume the cost of all

necessary servicing, repair or correction.

The KeY Book; From Theory to Practice (Springer 2016)

For a long time, the term formal verification was almost synonymous with functional

verification. In the last years, it became more and more clear that full functional

verification is an elusive goal for almost all application scenarios. (…) Not

verification but specification is the real bottleneck in functional verification.

The state of the art in IT industry

The state of the art. in IT science

Why earlier attempts failed?
(although some experiments are still in the course)

June 4, 2021 6A.Blikle - An invitation to a project (24)

In order to build a logic of programs,

we need a mathematical semantics of a programming language.

Two historical attempts to the definitions of mathematical semantics:

An operational semantics (VDL);

describe a virtual computer.

Denotational semantics (VDM)

S : Language ⟼ Denotations

S(P⧫Q) = S(P) ● S(Q)

S : AlgSyn ⟼ AlgDen

SEMANTICS

A homomorphism

between many-sorter algebras

Ada and Chill, 1980

A subset of Pascal 1987

Can a denotational semantics be written
for any language?

June 4, 2021 7A.Blikle - An invitation to a project (24)

My hypothesis

Probably not – at least not for the grammars of the languages that I

know.

This order has a historical justification. When people started to think

about semantics, syntaxes were already there.

And certainly this hasn't been done so far.

First syntax:

how to talk about

Then denotations

what to talk about

A traditional approach to building denotational semantics:

Let’s reverse
the usual order of things

June 4, 2021 8A.Blikle - An invitation to a project (24)

First describe the world of denotation: an algebra of the denotations of

programs components.

Then derive from it an adequate corresponding syntax

an algebra of
syntax

an algebra of
denotations

denotational
semantics

half
algorithmic

CREATION

creation

a
lg

o
ri
th

m

While we have a languages with
denotational semantics,

we can think about proving programs correct.

June 4, 2021 9A.Blikle - An invitation to a project (24)

Is proving programs correct

a right way

to validate programs?

Two problems:

1. A proof is usually longer then a theorem.

2. Programs are usually incorrect.

Let’s reverse
the usual order again

June 4, 2021 10
A.Blikle - An invitation to a project (24)

A mathematician
First a theorem, then a proof

An engineer
First a project (proof), then a product (e.g. a bridge)

Proof rules should be replaced by
sound program-construction rules

Validating programming

June 4, 2021 11A.Blikle - An invitation to a project (24)

The general idea

of a denotational model

These ideas have been published in my papers

in the years 1971 – 1989

(some with Antoni Mazurkiewicz and Andrzej Tarlecki)

MATHEMATICAL TOOLS

• fixed-point theory in CPO’s,

• set-theoretic domain equations (no Scott’s reflexive domains),

• three-valued predicate calculus,

• many-sorter algebras,

• abstract errors for error-handling mechanism.

June 4, 2021 12A.Blikle - An invitation to a project (24)

An example of

a many-sorted algebra

TWO SORTS OF ELEMENTS:

• numbers, e.g. real numbers

• Boolean values

REACHABLE ELEMENTS:

• {0, 1, 2,…}

• {tt, ff}

A denotational model
of a programming language

June 4, 2021 13A.Blikle - An invitation to a project (24)

Algebra of
denotations

Algebra of
abstract syntax

Algebra of
concrete syntax

algorythmcreation

an unambiguous
grammar of
parsing trees

an ambiguous
grammar of
programs

As

S = Co-1 ● As

If Co glues not more than As, then the (unique) homomorphism S exists.

Co

creation

A toy example,
part 1

June 4, 2021 14A.Blikle - An invitation to a project (24)

Algebra (grammar) of abstract syntax
Ide = {x, y, z,…}

Exp = var(Ide) | plus(Exp, Exp) | times(Exp, Exp)

Ins = assign(Ide, Exp) | compose(Ins, Ins)

Carriers Algebra of denotations

Ide = {x, y, z,…}

ExpDen = State → Number

InsDen = State → State

Constructors

ide : ⟼ Ide for all ide : Ide

var : Ide ⟼ ExpDen

plus : ExpDen x ExpDen ⟼ ExpDen

times : ExpDen x ExpDen ⟼ ExpDen

assign : Ide x ExpDen ⟼ InsDen

compose : InsDen x InsDen ⟼ InsDen

Semantics of abstract syntax (As)

Sid : Ide ⟼ Ideidentity

Sex : Exp ⟼ ExpDen

Sin : Ins ⟼ InsDen

State = Ide ⟹ Number
Notation:

A → B partial fun.

A ⟼ B total fun.

A ⟹ B finite fun.

ALGORITHM

ALGORITHM

A toy example,
part 2

June 4, 2021 15A.Blikle - An invitation to a project (24)

Semantics of abstract syntax (As)
Sid : Ide ⟼ Ide identity

Sex : Exp ⟼ ExpDen ExpDen = State → Number

Sin : Ins ⟼ InsDen

Sex.[plus(Exp-1, Exp-2)] =

plus.[Sex.[Exp-1], Sex.[Exp-2]]

Sex.[plus(Exp-1, Exp-2)].sta =

Sex.Exp-i.sta = ? ➔ ? for i = 1,2

Sex.Exp-i.sta : Error ➔ Sex.Exp-i.sta for i = 1,2

true ➔ Sex.Exp-i.sta + Sex.Exp-i.sta

constructor of denotations

addition of numbers

implementor-oriented definition

user-oriented definition

June 4, 2021 16A.Blikle - An invitation to a project (24)

Algebra (grammar) of concrete syntax
Ide = {x, y, z,…}

Exp = Ide | (Exp + Exp) | (Exp * Exp)

Ins = Ide := Exp | Ins ; Ins

Algebra (grammar) of colloquial syntax
Ide = {x, y, z}

Exp = Ide | (Exp + Exp) | (Exp * Exp)

Exp + Exp | Exp * Exp

Ins = Ide := Exp | Ins ; Ins

There is no denotational semantics
for this colloquial syntax (grammar)!

not acceptable ambiguity

CREATION
assisted

CREATION
assisted

acceptable
ambiguity

A toy example,
part 3Algebra (grammar) of abstract syntax

Ide = {x, y, z,…}

Exp = var(Ide) | plus(Exp, Exp) | times(Exp, Exp)

Ins = assign(Ide, Exp) | compose(Ins, Ins)

A model with a colloquial syntax

June 4, 2021 17A.Blikle - An invitation to a project (24)

Reachable
part

Algebra
of abstract syntax

Algebra
of concrete

syntax

algorythmcreation

AsCo

S = Co-1 ● As

Colloquial
syntax

a restoring transformation
(is not a homomorphism)

Algebras of
syntax are
reachable by def.

Algebra of

denotations

June 4, 2021 18A.Blikle - An invitation to a project (24)

Lingua – an example language
where to explain the application of our model

❑ Booleans, numbers, words, lists, arrays, record and their arbitrary

combinations plus SQL databases;

❑ three-valued propositional calculus for Boolean expressions,

❑ abstract errors incorporated into the algebras of denotations,

❑ user-defined structured types,

❑ basic programming constructors (:=, if-then-else-fi, while-do-od)

❑ procedures with recursion and multirecursion,

❑ object-oriented programming (work in progress)

❑ concurrency (work in progres)

❑ sound program-constructors based on Hoare’s logic with clean

termination (three-valued predicate calculus).

June 4, 2021 19A.Blikle - An invitation to a project (24)

What is to be done in the project
Tools – A working environment of a programmer in Lingua

1. An interpreter/compiler of Lingua; possibly developed by bootstrapping

(a preliminary experimental interpreter written in Ocaml is already there)

2. An editor of programs supporting the use of sound program-construction

rules

3. An adaptation of some existing theorem prover for checking conditions in

the process of program development by construction rules.

June 4, 2021 20A.Blikle - An invitation to a project (24)

What is to be done in the project
Tools – A working environment for language designer/developer

1. An editor supporting the writing of the definitions of denotation constructors.

2. A system generating abstract-syntax grammar from a signature (a meta-

definition) of the algebra of denotations.

3. A system supporting the development of a concrete-syntax grammar form

an abstract-syntax grammar.

4. A system supporting the generation of a restoring application from colloquial

syntax into a concrete syntax.

5. A generator of semantic clauses from a concrete-syntax grammar and the

definitions of denotation constructors.

6. A generator of an interpreter/compiler code from semantic clauses.

June 4, 2021 21A.Blikle - An invitation to a project (24)

What is to be done in the project
Designing a "basic practical" Lingua-WU

(WU- stands for Warsaw University)

(partly done)

1. Formal definitions of algebras and their constructors:

1. data-related algebras (bodies, composites, types and values)

2. applicative denotations – data- and type expressions),

3. imperative denotations – structured instructions and procedures

2. Grammar of concrete syntax.

3. Colloquialisms and restoration transformation.

4. A programmer's manual of Lingua-WU.

5. Some practical experiments with Lingua-WU.

June 4, 2021 22A.Blikle - An invitation to a project (24)

What is to be done in the project
Further developments of Lingua-WU

1. The enrichment of Lingua-WU with object-oriented mechanisms; work in

progress.

2. The enrichment of Lingua-WU with SQL mechanisms; work in progress.

3. The enrichment of Lingua-WU with HTML mechanisms.

4. The enrichment of Lingua-WU with tools for microprogramming.

5. A working environment of a designer of Domain Specific Languages (DSL)

6. …

June 4, 2021 23A.Blikle - An invitation to a project (24)

What is to be done in the project
General research areas

1. A denotational model for languages with objects (work in progress)

2. A denotational model for languages with concurrency (work in progress)

3. Customer-oriented specification languages for different areas of

applications.

4. Some more issues will certainly emerge in the course of the development of

our model and language.

June 4, 2021 24A.Blikle - An invitation to a project (24)

Thank you for

your attention

